Initiative de réappropriation climatique

Catégorie : Agroécologie Page 2 of 6

Agriculture de conservation : état des lieux mondial

Quelle diffusion de l’agriculture de conservation dans le monde ?

image 1 et image 2

Dans un article précédent, nous avons présenté les avantages de l’agriculture de conservation (AC), en insistant sur la question hydrique. En permettant une meilleure infiltration et une meilleure utilisation de l’eau, l’AC impacte le climat aux échelles micro et macro-climatiques.

Après avoir émergé aux Etats-Unis suite à une grave crise écologique [2], l’agriculture de conservation s’est étendue à travers le monde. Selon une étude de 2021 [3], “en 2015/2016, la superficie totale des terres cultivées en AC était de 180,4 millions d’hectares, soit 12,5 % de la superficie mondiale des terres cultivées. En 2018/2019, la superficie totale des terres cultivées était de 205,4 millions d’hectares, soit 14,7 % de la superficie mondiale des terres cultivées”.

Voici une revue non exhaustive de ce développement :

  • Alors que le Dust Bowl avait violemment percuté les Etats-Unis, l’agriculture de conservation y a énormément progressé, avec plus de 35% des terres cultivées (données de 2015-16).
  • Environ 39% de l’ensemble des surfaces en AC dans le monde se trouvent en Amérique du sud. Ainsi, au Brésil l’AC s’est développée depuis les années 1970 pour lutter contre l’érosion. Elle couvre 68 millions d’hectares en 2020 (en essor de 3,2% par rapport à 2018).
  • En Australie, selon une étude de 2009, “environ 80 à 90 % des 23,5 millions d’hectares de cultures d’hiver australiennes sont désormais cultivés selon les principes de l’agriculture de conservation« . L’altération des sols et le climat sec ont conduit les agriculteurs à adopter massivement ces pratiques.
  • Au Kazakhstan, environ 75% des terres arables sont menacées (désertification, salinisation, érosion et épuisement des terres). A dater de 2010, environ 10% des terres étaient en agriculture de conservation.
  • En Chine, ”l’érosion due au labour traditionnel a dégradé plus de 50 % des sols agricoles”  alors que moins de 5 % des agriculteurs ont adopté l’AC. Face à l’ampleur de la crise, un plan vise à développer l’agriculture de conservation sur 70% des terres arables du Nord Est. Si l’on se réfère au développement de la lutte contre la désertification et au volontarisme du pouvoir chinois, ce pays pourrait tirer le développement de ces pratiques.
  • En France, l’AC ne concerne qu’environ 4% des surfaces. Les progrès à opérer y sont donc considérables. Toutefois, beaucoup d’agriculteurs déploient au moins un des piliers de l’AC.

L’Agence de l’eau Adour-Garonne, entre autres, soutient fermement le développement de l’agriculture de conservation dans son bassin, ce qui est cohérent avec la situation hydrique du grand Sud Ouest. L’amélioration de l’utilisation de l’eau est vitale pour freiner l’aridification des départements les plus méridionaux.

Agriculture de conservation : quels bénéfices pour les sols et le climat ?

L’agriculture de conservation (AC ou ACS) présente de nombreux avantages. Alors que l’humidité des sols est centrale pour le climat et que l’agriculture occupe de larges surfaces (54% du territoire français), l’AC constitue une des seules techniques agroécologiques et mécanisables à même d’optimiser les interactions sol-climat.

L’AC est fondée sur trois piliers : couverture permanente des sols, diversification des cultures et absence de labour (ou travail très superficiel des sols). Créée aux Etats-Unis après le Dust Bowl, l’agriculture de conservation améliore la santé des sols. Elle est particulièrement utile face à l’érosion (hydrique et éolienne). Pour autant, alors qu’au moins un tiers des sols est dégradé dans le monde, ces pratiques peinent à se généraliser, malgré des progrès notables, en France notamment. Dans son récent rapport, le Shift Project prône d’ailleurs son développement.

Généralement, les exploitations appliquent un des piliers, mais rarement les trois. L’AC se caractérise par sa technicité et par l’hétérogénéité des pratiques, en fonction des climats et des sols. Le Graal pour tout praticien est de parvenir à l’agriculture biologique de conservation (ABC). En France, Konrad Schreiber, ainsi que les Décompactés de l’ABC (avec notamment Quentin Sengers), travaillent à se passer d’intrants chimiques et du labour.

Voir à ce sujet la chaîne Youtube de Verre de Terre Production et l’excellent état de la recherche par Wiki Triple Performance.

L’agriculture de conservation limite sensiblement l’érosion : la vitesse d’infiltration de l’eau double en moyenne selon une étude ARVALIS publiée par l’INRAE. Les surfaces couvertes en permanence lissent les effets des épisodes de pluie extrêmes. L’AC augmente de 15 à 20% l’efficience d’utilisation de l’eau par rapport aux systèmes traditionnels, voire jusqu’à 45%. En effet, plus d’eau s’infiltre, moins d’eau est perdue par l’évaporation du sol et le ruissellement. Qui plus est, l’AC favorise le développement racinaire. En ne perturbant pas la vie du sol, les vers de terre et microorganismes y prospèrent. Les interactions sol-plante-microorganismes sont favorisées, ce qui améliore l’utilisation de l’eau.

En 2012, les Etats-Unis ont connu une grave sécheresse. Pourtant, une “augmentation moyenne du rendement de 9,6 % pour le maïs cultivé après une culture de couverture et une augmentation de 11,6 % pour le soja” [8] a été reportée par les agriculteurs en AC, grâce à l’augmentation de l’humidité des sols. Le coût des couverts végétaux est alors couvert par les cours agricoles élevés. L’AC a donc des impacts économiques et de résilience évidents.

Dans une perspective territoriale, l’AC en renforce la robustesse et bénéficie au climat. Des sols couverts en permanence favorisent une évapotranspiration régulière. Une meilleure humidité des sols accroît les probabilités de précipitations. Enfin, les risques d’inondations sont atténués.

Généraliser l’agriculture de conservation, et, plus globalement, toutes les approches permettant l’intensification agroécologique, devient urgent.

Qu’est-ce qu’une plante ?

Francis Hallé a souvent dit qu’il était incapable de définir ce qu’était un arbre, car dès qu’on se hasarde à une définition, on trouve un contre exemple. Cette idée est reprise dans un film de 2002 de Sophie Bruneau et Marc-Antoine Roudil. Après avoir essayé plusieurs définitions, le narrateur finit par conclure pragmatiquement que si on rentre dans une plante en voiture et que la voiture est cassée, alors cette plante est un arbre.

Illustration : interaction entre Nepenthes ampullaria et une espèce de grenouille (Microhyla nepenthicola). Les déjections de la grenouille et de ses têtards nourrissent la plante. Il semble que celle-ci soit également capable de digérer des feuilles mortes (voir ici et ).

Cette difficulté à définir ce qu’est un arbre ou une plante s’applique-t-elle aux végétaux en général ? 

Si on se base sur la définition du Larousse, un végétal est un être vivant dont les cellules sont limitées par des membranes de cellulose. On a là effectivement une définition qui fonctionne. Toutefois, le dictionnaire avance d’autre caractéristiques moins universelles :

  • La présence de chlorophylle
  • Il existe des plantes comme la monotrope uniflore qui en sont dépourvues
  • Le fait d’être fixé au sol 
  • L’œillet de l’air, des chansons de Carlos Gardel (tillandsia aeranthos) est un plante sans racine, qui s’enroule autour d’un support quelconque (un fil électrique par exemple) 
  • Une sensibilité et une mobilité extrêmement discrètes
  • La sensitive (mimosa pudica) se rétracte lorsqu’on la touche
  • Et enfin, une nourriture composée de sels minéraux et de gaz carbonique

Ce dernier point mérite sans doute qu’on s’y arrête. En effet, ce n’est pas parce qu’on sait faire pousser des plantes de façon ultra intensive avec des minéraux et du gaz carbonique, que c’est ce qu’elles consomment spontanément. Au-delà des plantes carnivores spectaculaires, il semble que le fait de consommer des microbes soit assez répandu chez les plantes, il y a même une algue verte qui sait dégrader la cellulose d’autres plantes. Enfin, certaines orchidées mangent directement des champignons

Soyons mammouth

Le pléistocène est une époque géologique qui s’étend de 2,58 millions d’années à 11.700 avant le présent. Elle est caractérisée par une succession d’âges glaciaires et interglaciaires qui ont favorisé la création d’un biome connu aujourd’hui sous le nom de steppe à mammouths. Il s’agit d’une étendue herbeuse  allant de l’Espagne à l’Alaska. C’est l’âge d’or de la mégafaune.

Pendant longtemps on a pensé que cette steppe était dominée par les graminées, comme c’est le cas de tous les écosystèmes ouverts d’aujourd’hui. Pourtant un  article paru dans Science en 2014 a montré que c’est une autre famille de plantes (les phorbes) qui régnaient sur la steppe. Et que c’est il y a seulement 10.000 ans, c’est-à-dire en plein déclin des populations de mammouths, que les graminées ont pris le dessus. Un autre article de 2018 montre que “sans les mammouths, la végétation serait restée au stade d’une toundra peu productive qui n’aurait en aucun cas pu soutenir la diversité et l’abondance des grands herbivores dans un contexte climatique glaciaire”. Pour la grande steppe, le mammouth est une espèce clé de voûte. Il façonne le paysage.

Bien sûr, chaque espèce aménage son territoire. Les exemples ne manquent pas. Les blaireaux, en creusant leurs latrines autour des chemins qu’ils parcourent, font pousser les arbres fruitiers qui les nourrissent. Les plantes injectent dans les sols des sucres qui favorisent une microfaune et une fonge spécifique. Les castors aménagent des zones humides et multiplient saules, bouleaux et peupliers dont ils aiment se nourrir… 

Ce qui est remarquable ici, c’est l’impact sur la productivité de l’écosystème, notamment en condition extrême.

L’idée qu’un écosystème, pourvu qu’on lui apporte la juste perturbation, puisse être d’une plasticité sans limite, est au cœur de cette notion de syntropie que nous promouvons.

Nous ne sommes pas condamnés à voir notre environnement se dégrader, nous pouvons, en ayant les bons gestes au bon moment, l’orienter vers plus de productivité et plus de résilience sans besoin de déployer des trésors de technologie.

Le vivant laisse des traces I : carbone et photosynthèse

Illustration : la reconstruction par cryo-ME de la capside complète de l’apoferritine, permet de faire apparaître “l’ombre des atomes” (Paul Emsley/MRC Laboratory of Molecular Biology)

Les isotopes sont des atomes qui possèdent la même charge électrique mais une masse différente.

Pour le carbone, par exemple, il en existe 15. Deux sont stables. Le carbone 12 est le plus courant. Il représente 98.93 % du carbone total. Le carbone 13 vient en second (1.07 %). Quant aux autres isotopes, ils n’existent qu’à l’état de trace.

Ainsi d’un point de vue chimique ⚗️ les isotopes sont interchangeables, mais physiquement ⚖️,  ils ont des propriétés différentes :

  • certains sont stables
  • d’autres radioactifs ☢️

L’analyse isotopique permet d’établir scientifiquement un certain nombre de faits (« L’isotope, traceur d’origine : distribution isotopique dans les composés naturels« ):

  • L’analyse de l’oxygène permet par exemple de déterminer si une pluie  🌧️ est d’origine marine 🌊 ou terrestre 🌳(voir la présentation de l’hydrologie isotopique).
  • L’analyse du carbone permet de dater les résidus organique (carbone 14) 🦖
  • L’analyse de l’azote permet de déterminer la place d’une créature dans la chaîne alimentaire 🥩
  • Lorsque l’azote est trop dégradé, l’analyse du zinc fixé dans les dents permet de déterminer ce que le propriétaire de la dent a mangé [4]

Un autre aspect intéressant, souligné par le paléoanthropologue @Jean-Jacques Hublin, dans sa série de cours de 2018 (l’homme prédateur) est la capacité, en analysant les isotopes du carbone, de déterminer si une chaîne trophique s’est construites sur des plantes effectuant une photosynthèse C3 ou C4. Cela lui permet par exemple de déterminer à quels moments les hominines ont pu quitter le couvert forestier (C3) pour s’aventurer dans la savane (C4).

La proportion d’isotopes du carbone caractéristique d’une type de photosynthèse, se retrouve non seulement dans les résidus de plantes (y compris le charbon), mais aussi dans les animaux qui les consomment et chez les prédateurs et super prédateurs.

L’activité des plantes façonne durablement la composition physico-chimique du monde. Elle modifie la composition des milieux dans lesquels elles évoluent. Les isotopes sont un des vecteurs de cette transformation. Ce n’est pas le seul.

Au sein de l’Autoroute de la Pluie nous nous interrogeons beaucoup sur l’intensité de cet impact, qui reste un champ de recherche largement ouvert.

La croissance, c’est les plantes !

Sources d’illustration : image 1 image 3 image 4

Promouvoir la photosynthèse, car la croissance c’est les plantes
Et si, en 2025, on changeait de curseur et qu’on se mettait, collectivement et massivement, à promouvoir la photosynthèse, la technologie la plus propre, fruit de milliards d’années de R & D ?

Dans un exposé très érudit et poussé en biologie et chimie, l’agroécologue Olivier Husson expose l’importance de la photosynthèse pour la santé des plantes et du sol, soit le socle de la biosphère . La présentation «la photosynthèse : la centrale énergétique indispensable pour la “santé unique”» démontre le caractère névralgique de ce processus bioénergétique. La régularité de la photosynthèse doit être assurée pour fournir une alimentation énergétique au vivant.

Chaque printemps, les publications fleurissent pour enjoindre de cesser la tonte systématique des jardins. Cela va dans le bon sens, mais ce mouvement doit prendre de l’ampleur. L’inconscient collectif doit évoluer profondément. Il faut passer des pelouses tondues à ras à l’abondance végétale. 

Il faut inciter à l’installation massives de potagers, collectifs ou non, qui soutiendraient le développement de la sécurité sociale alimentaire et le verdissement des villes doit accélérer. Imaginez des vergers plantés sur les délaissés communaux et des balcons fleuris en mode syntropique !

De même, les services environnementaux rendus par les agriculteurs doivent être fortement soutenus. Cela nécessite de disposer d’indicateurs fiables facilitant la tâche administrative du monde agricole. La rémunération de ces services environnementaux pourrait, en partie, reposer sur l’activité de photosynthèse.

L’agriculture traditionnelle, généralement la polyculture-élevage en France, repose sur des cultures diversifiées allant dans ce sens. C’est une immense opportunité alors que “l’agriculture familiale […] occupe 2,6 milliards de la population humaine qui produisent 70 % de la production alimentaire mondiale avec 30 % des ressources agricoles mondiales” [voir le lien]. Réaffectons les 70% restants à l’agroécologie !

Soutenir ce mouvement permet de disposer d’une alimentation de qualité. Surtout, enclencher cette mobilisation collective permet de proposer un nouveau récit. Et une agriculture diversifiée, utilisant l’arbre en pivot, apporte tant de bénéfices, écosystémiques et climatiques.

Un sol, tant qu’il est nu, ne rapporte rien, ni en termes écologique, ni en termes économiques. Comme le résume Konrad Schreiber, spécialiste de l’agroécologie : “sol à nu, sol foutu”.

  • un sol à nu, c’est l’érosion, des inondations, de la chaleur et des émissions de CO2
  • un sol à nu, c’est le Dust Bowl, ces tempêtes de poussière qui ont ravagé les Etats-Unis à cause de pratiques mécanisées néfastes

Collectivement, luttons contre les aberrations du béton et de la désertification auto-générée !

#photosynthèse #agroécologie

La photosynthèse à 5 pattes

Dans la publication précédente, nous avons vu qu’il existe trois modes de photosynthèses, C3, C4 et CAM, chacun adapté à un contexte et notamment à un optimum de température. La C4 pour les herbes tropicales, la CAM pour les plantes grasses, la C3 pour le reste. Aujourd’hui nous allons nous attacher à nuancer ce propos.

Image paulownia – Image peuplier : (projet déployé par l’Association française d’agroforesterie) – Image bambou – Image miscanthus

D’abord, sur l’optimum de température, les travaux récents de Mulet François sur la conduite de certaines plantes en conditions tropicale, laissent à penser que la question est plus complexe que ce que l’on pourrait le croire de prime abord, puisqu’il fait pousser des courges à 45°C et 100 % d’humidité. Pourtant, elles sont censées avoir un optimum à 25°C. La disponibilité en eau et l’humidité de l’atmosphère ainsi que l’espèce sont susceptibles de modifier ce paramètre.

Beaucoup de plantes ont en outre un mode de photosynthèse non conventionnel :

– le paulownia, dont on a longtemps cru que c’était un arbre C4, est en fait capable d’être un C3 et un CAM (voir cette étude et celle-ci).

– le bambou est un C3 atypique qui sait utiliser le CO2 issu de la photorespiration (voir ce lien)

– le miscanthus est certes une plante C4, mais capable de fonctionner à partir de 15°C (voir l’étude : « Long SP, Spence AK. 2013. Toward cool C4 crops. Annual Review of Plant Biology » 64, 701–722).

On remarque au passage que beaucoup de champions de la biomasse sont des plantes atypiques.

Dans la biomasse, on considère qu’il y a toujours à peu près 58% de carbone. Ce qui compte donc, ce n’est pas la nature de la biomasse, mais la quantité produite (exprimée en matière sèche).

Pour une quantité d’eau donnée, toutes les plantes ne produisent donc pas la même biomasse. Et cela ne dépend pas seulement du processus de photosynthèse. Les plantes ont d’autres stratégies, comme la mise en réserve de sucres dans les parties souterraines, l’alliance avec certains champignons ou la capacité à capturer la rosée qui les aident à croître. Est-ce pour autant qu’on peut dire qu’elles captent plus de CO2 ?

Ce qui compte avant tout pour produire de la biomasse, c’est que la plante soit adaptée à ses conditions de culture : son sol, son climat, mais aussi à la méthode de plantation et de conduite des cultures.

#co2 #plantes #photosynthèse

Les sources de l’image du post sont accessibles ici [7]. Nous avons ajouté le peuplier pour illustrer un végétal à croissance rapide des milieux tempérés.

Les photosynthèses

Il y a, derrière un discours marketé sur certaines plantes qui capteraient plus de CO2, un point qu’il faut éclaircir.

Il y a, derrière un discours marketé sur certaines plantes qui capteraient plus de CO2, un point qu’il faut éclaircir. 

La photosynthèse est une réaction chimique qui utilise la lumière et un “donneur d’électrons” pour transformer du CO2 en autre chose. Le donneur d’électrons peut être du fer, des nitrites, de l’hydroxyde de soufre ou d’arsenic. C’est généralement de l’eau. On la retrouve chez les algues, les plantes et certaines bactéries (les cyanobactéries). La photosynthèse à base d’eau, celle des plantes, est dite “photosynthèse oxygénique”. Elle décompose l’eau et le CO2 pour produire du sucre, de l’eau et de l’oxygène. 

6CO2 + 24H2O C6H12O8 + 12O2 + 12H20

Schéma issu de l’étude source de cet article

Pour la majorité des plantes (celles qu’on appelle C3), cette réaction est associée à une activité coûteuse en énergie et en eau qu’on appelle photorespiration. Cette stratégie ne permet qu’une production de biomasse moyenne, mais elle est très adaptée à des conditions climatiques variables. On considère généralement qu’il existe un optimum thermique de 25°C. Ce type de photosynthèse permet de capter 1 gramme de carbone pour 400 g d’eau.

Une autre stratégie (C4) permet d’éviter la photorespiration. Le processus de photosynthèse est effectué dans deux cellules distinctes. L’optimum thermique passe à 35° C et la plante utilise seulement 250 g d’eau pour fixer 1 g de carbone. C’est la stratégie des plantes tropicales comme le maïs, le sorgho, la canne à sucre et le mil.

Mais C3 et C4 ont une faiblesse : la plante doit pouvoir evapotranspirer en même temps qu’elle fait de la photosynthèse. S’il fait trop chaud, la plante peut donc soit fermer ses stomates pour préserver son eau et cesser toute activité métabolique, soit continuer la photosynthèse, quitte à tomber en stress hydrique.

Seules les plantes CAM, c’est à dire essentiellement les plantes grasses, les cactus, savent gérer cette situation. Comme les C4, ces plantes effectuent leur photosynthèse en deux temps. La nuit, elles effectuent les échanges gazeux, puis le matin, après s’être gorgées de rosée, elles ferment leur stomates et finissent de métaboliser le CO2 absorbé durant la nuit sans perdre une goutte d’eau. Leur optimum est de 35°C le jour et de 15°C la nuit, car l’échange gazeux ne peut se faire qu’avec une certaine chaleur. Mais c’est seulement 50 g d’eau qui leur faut pour capter 1 g de CO2.

Il n’y a pas donc des plantes qui captent plus de CO2, il y a des plantes qui à volume d’eau constant vont faire plus de biomasse et des plantes qui sont davantage capables que d’autres de fonctionner quand il fait chaud.

#photosynthèse

Les moutons de mer (ou moutons à fleur) volent les chloroplastes des algues qu’ils consomment pour faire eux mêmes de la photosynthèse. Image accessible ici.

Voir l’étude « Exploring natural variation of photosynthesis in a site-specific manner: evolution, progress, and prospects » pour la source bibliographique.

Les méthodes agricoles en milieu semi-désertique

Comment cultiver en territoire semi-désertique et sensiblement diminuer le risque d’inondations en cas d’épisodes pluvieux extrêmes ?

L’étude Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso, qui analyse la situation en milieu Sahélien, revient sur des principes qui devraient être adoptés dès maintenant dans un pourtour méditerranéen en cours d’aridification.

Parue en 2024, cette étude est le fruit d’une collaboration entre scientifiques burkinabés et japonais, dont Carine Naba. Ils ont utilisé des données nationales, la télédétection et des outils SIG pour évaluer l’adoption des mesures de conservation des sols et des eaux (“Soil and water conservation measures (SWCMs)” dans l’étude) et leur potentiel de résilience climatique.

Les techniques étudiées sont traditionnelles au Sahel : demi-lunes, cordons pierreux, zaïs, diguettes filtrantes, bandes enherbées et boulis.

Les résultats de l’étude sont notamment :

  • Une augmentation notable de la végétation dans les provinces à forte prévalence de pratiques de conservation des sols et des eaux. Cet essor interpelle alors que la désertification menace les pays du Sahel. Il est possible de lutter efficacement contre ce risque.
  • Le déploiement de ces techniques entraîne une réduction considérable du ruissellement. Ainsi, les références bibliographiques de l’étude font état de réduction du volume de ruissellement de l’ordre de “70% au niveau du champ et de 8% au niveau du bassin en cas d’événements pluvieux extrêmes”.
  • Plus les terres sont dégradées, plus les agriculteurs sont susceptibles d’adopter ces pratiques (seuil évalué à partir de 60% de dégradation des terres). Cela pose la question de l’adoption des pratiques agroécologiques, qui dépend encore malheureusement de l’état de dégradation des terres. L’adage “mieux vaut prévenir que guérir” prend tout son sens, tant en Afrique qu’en Europe.

On le voit, des ajustements agronomiques relativement mineurs peuvent permettre une atténuation sensible d’aléas climatiques de plus en plus extrêmes. Nous pensons qu’il ne faut pas attendre que la situation se dégrade pour réagir. C’est pourquoi nous prônons un déploiement rapide de ces techniques en contexte méditerranéen. Les tragiques inondations d’octobre 2024 en Espagne ne peuvent qu’accréditer cette thèse.

Il est temps d’adapter nos territoires et les exploitations agricoles qui les maillent. Ces mesures de conservation des sols et des eaux s’apparentent à l’approche de l’hydrologie régénérative en plein essor en France, que complète efficacement l’agroforesterie. L’agriculture de conservation des sols, l’agriculture biologique de conservation des sols et l’agriculture régénérative sont d’autres méthodes à déployer massivement pour renforcer notre robustesse, concept stratégique que diffuse Olivier Hamant.

Maïs et climat aux USA

Comment la culture du maïs à changé le climat de la Corn Belt ?

Une étude publiée dans Geophysical Research Letters révèle que l’intensification de l’agriculture dans le centre des États-Unis au cours du XXe siècle a entraîné, durant la période estivale, une baisse des températures et une augmentation des précipitations, en contradiction avec la tendance mondiale au réchauffement climatique.

L’étude, dirigée par des scientifiques de l’université de l’Iowa et du National Oceanic and Atmospheric Administration (NOAA), a analysé des données climatiques et agricoles sur une période de 100 ans. La région étudiée, la Corn Belt, correspond aux États américains du Midwest (Iowa, Illinois et Wisconsin, entre autres).

Les résultats indiquent que l’intensification agricole (qui comprend, hélas, l’augmentation de l’utilisation d’engrais et de pesticides) a modifié les échanges d’énergie entre la surface terrestre et l’atmosphère, conduisant à un refroidissement estival régional.

Cette découverte met en lumière l’impact de l’agriculture sur le climat régional. Les pratiques agricoles peuvent avoir des effets complexes et parfois contre-intuitifs. Entre 1950 à 2010, la quantité de maïs récoltée chaque année dans la Corn Belt a augmenté de 400 %, alors que cette plante présente de très importantes capacités d’évapotranspiration estivale.

Malheureusement, cette tendance climatique positive résulte d’une approche basée sur l’intensification technologique et l’usage d’intrants, qui n’est ni soutenable ni souhaitable. Elle a eu pour corollaire une intensification de l’irrigation et une inflation de l’usage de pesticides et surtout la perte d’un tiers de couches de surface riche en carbone et des problèmes de pollution de l’eau aux nitrates. Il faut donc rester prudent sur ces résultats qui peuvent masquer d’autres impacts délétères.

Et une autre étude sur cette thématique, alerte : “si la croissance de la production de maïs et de soja devait stagner, la capacité de la rétroaction culture-climat à masquer le réchauffement s’atténuerait, exposant les cultures américaines à des températures extrêmes plus nocives.”

Vous l’aurez compris, au travers de cet exemple nous ne cherchons pas à faire la promotion de pratiques culturales intensives, mais bien de mettre en avant l’interaction entre cultures agricoles et climat.

En outre, le maïs, pour beaucoup devenu le symbole d’une agriculture intensive et des élevages hors sol, reste une plante aux capacités de mycorhization et de photosynthèse (plante dite C4) extraordinaires.

Ainsi, la culture associée des “trois sœurs” (maïs, haricot et courge) ou milpa, est un mode de culture associé propre aux peuples amérindiens, qui peut, par sa stratification, rappeler l’agriculture syntropique. Décidément, nous n’avons pas fini d’apprendre des jardins américains.

N’est-il pas temps d’examiner sérieusement les possibilités offertes par l’agroforesterie et l’agriculture syntropique pour nos territoires ?

Fièrement propulsé par WordPress & Thème par Anders Norén

WP2Social Auto Publish Powered By : XYZScripts.com