Initiative de réappropriation climatique

Catégorie : Biodiversité Page 1 of 2

Les plantes migratrices

Saviez-vous que, comme les animaux, les végétaux migrent ?
Dans un épisode de l’émission La Terre au carré, l’écologue Didier Alard présente plusieurs stratégies de migration employées par les plantes à travers l’histoire de notre planète.

Comme l’explique le chercheur, les récents progrès des techniques d’analyse (imageries satellitaires, études de parenté à partir de marqueurs génétiques…) ont permis une meilleure compréhension de ces phénomènes.

Contrairement à ce que l’on observe chez les animaux, il n’existe pas d’individus migrateurs chez les végétaux, nécessairement figés. Le déplacement spatial passe par la génération n+1 et la migration se fait “par petits pas intergénérationnels, qui aboutissent finalement à traverser un continent sur des milliers de kilomètres”, décrit Didier Alard.

Dans l’histoire de ces migrations, l’apparition de la graine comme moyen de reproduction, il y a plus de 350 millions d’années, a joué un rôle décisif. Alors que jusque-là, les végétaux dispersaient leur gamètes “comme des petits spermatozoïdes dans la nature”, les plantes à graine ont inventé le principe de la fécondation interne.

Souvent enveloppées dans des fruits, les graines constituent des instruments très efficaces de dissémination. Pour déplacer ces dernières et conquérir de nouveaux territoires, les plantes ont multiplié les stratégies et utilisé différents alliés de circonstance, comme le vent, qui permet par exemple aux graines de pissenlit de voyager sur des dizaines de kilomètres, ou l’eau, vecteur de migration de la noix de coco entre autres.

La migration des végétaux s’est aussi souvent réalisée en coévolution avec des groupes animaux (insectes, oiseaux, mammifères). Didier Alard cite ainsi la technique du velcro, employée par différentes plantes (benoîte, bardane, gaillet) pour voyager en s’accrochant à la fourrure d’animaux.

D’autres espèces, comme le gui, misent sur des stratégies différentes : les graines ou les fruits qui les contiennent sont ingérés par des animaux qui les excrètent ensuite dans d’autres milieux où elles pourront proliférer.

L’être humain a lui aussi participé activement à cette dissémination, depuis le chasseur-cueilleur, qui transportait des plantes d’un endroit à un autre, jusqu’à l’ère moderne. “On passe notre temps à véhiculer des graines un peu partout, sous nos chaussures ou par les transports”, illustre l’écologue.

Loin de se faire au hasard, la migration des végétaux répond le plus souvent à des impératifs environnementaux, notamment l’évolution du climat. La période actuelle représente donc un défi majeur, résumé par Didier Alard en une interrogation : “Les plantes sont-elles assez rapides pour s’adapter au changement climatique ?

Si la migration des plantes a toujours existé, il semble aujourd’hui crucial d’accompagner ce mouvement, par exemple en favorisant l’introduction d’espèces pionnières dans des écosystèmes très dégradés ou en voie de transformation accélérée.

Végétation et climat : comment les plantes atténuent le réchauffement

La qualité de la couverture végétale permet d’atténuer les aléas climatiques. Cette relation est établie par de nombreuses études, dont voici un aperçu.

L’étude de 2022 “Biodiversity mediates ecosystem sensitivity to climate variability” démontre que la diversité végétale atténue la sensibilité des écosystèmes aux variations climatiques. La complémentarité fonctionnelle des espèces permet une optimisation des flux hydriques et énergétiques. Cette étude repose sur l’étude de plus de 57 500 espèces végétales et des observations de télédétection dans l’hémisphère occidental.

Une autre étude, “Vegetation-based climate mitigation in a warmer and greener World”, s’attache à quantifier le potentiel de régulation climatique offert par les végétaux, selon différents scénarios d’émissions de CO₂. Selon les modélisations, le verdissement pourrait atténuer le réchauffement terrestre de 0.71°C d’ici 2100 dans un scénario de fortes émissions. Ce résultat est loin d’être anodin quand on sait que “chaque dixième degré compte”, comme le rappellent inlassablement les scientifiques engagés sur ce sujet.

En se plongeant dans l’étude du climat passé, des résultats forts instructifs apparaissent également. C’est le cas de l’étude “Geographic range of plants drives long-term climate change”. Publiée en 2024, elle est le fruit d’une collaboration pluridisciplinaire d’une équipe de chercheurs britanniques. Malgré des limites relevées par les auteurs, cette modélisation paléoclimatique innovante montre que la distribution spatiale des végétaux influence davantage le climat que leur seule productivité biologique.

En effet, la Pangée, le supercontinent rassemblant la quasi-totalité des terres émergées jusqu’au début du Jurassique, avait un climat majoritairement aride. Cette configuration géographique aurait limité l’effet régulateur des plantes en réduisant leur aire de répartition géographique. Selon les auteurs, la fixation du carbone aurait été plus faible et la concentration de CO₂ dans l’atmosphère presque deux fois plus élevée que ce que les modèles avaient précédemment prédit. Cette perspective géohistorique est cruciale pour comprendre les interactions biosphère-géosphère, même si la complexité de cette modélisation à l’échelle planétaire et couvrant des millions d’années invite à la prudence.

Ces travaux soulignent les difficultés pour la modélisation climatique d’intégrer pleinement les rétroactions biophysiques. La conciliation des approches réductionnistes (modèles de circulation générale ou GCM) et des théories systémiques (autorégulation biotique) constitue un défi important pour la recherche. L’unification des paradigmes biophysiques et biochimiques en climatologie est plus que jamais nécessaire.

L’Autoroute de la Pluie entend stimuler l’intensification agroécologique, et, plus largement, susciter la prise de conscience sur l’importance des interactions sol-végétation-climat par la vulgarisation scientifique.

Biodiversité et rendements agricoles : ce que dit la science

La biodiversité au secours des rendements agricoles ?

Dans un contexte d’essoufflement des rendements agricoles, plusieurs expériences de terrain montrent que favoriser la réintroduction de la biodiversité pourrait aider à inverser la tendance.

Un article du Monde d’octobre 2024 présente les travaux de l’écologue Marie-Charlotte Anstett, qui a réintroduit des insectes pollinisateurs sur des cultures de cassis en chute de productivité en Bourgogne, avec des résultats spectaculaires : les rendements des pieds concernés sont en effet désormais “plus de trois fois plus importants que ceux des plants témoins” !

Le directeur de recherche au CNRS Vincent Bretagnolle a également travaillé sur ce sujet dans sa zone atelier des Deux-Sèvres. Il a notamment étudié en situation l’impact des pollinisateurs sur les rendements des cultures de colza et de tournesol.

Les conclusions, basées sur plusieurs centaines de parcelles étudiées sur quatre années successives, indiquent qu’abeilles et pesticides sont à peu près équivalents dans leur capacité à augmenter les rendements, affirmait en 2019 le chercheur. Mais d’un point de vue économique, les abeilles sont plus efficaces, tout simplement parce qu’elles sont ‘gratuites’.”

Le rôle décisif joué par les pollinisateurs dans le développement des végétaux a par ailleurs été abondamment étudié par la science. En 2016, un rapport de l’IPBES affirmait que 75% de nos cultures alimentaires et près de 90% des plantes sauvages à fleurs dépendent, au moins en partie, de la pollinisation par les animaux.

Certains agronomes contestent toutefois la validité scientifique d’une corrélation directe entre pollinisation et rendements, qui reposerait sur des “simplifications abusives” liées aux écueils des méthodes statistiques utilisées. Ces limites doivent être prises en compte. Il n’existe pas de solution miracle au problème agricole.

Continuer à explorer la piste d’une agriculture en meilleure harmonie avec le vivant, comme le fait depuis plus d’une vingtaine d’années The Jena Experiment, n’en demeure pas moins pertinent. Implantée en Allemagne, sur un terrain de 10 hectares divisé en 400 parcelles, cette initiative lancée en 2002 étudie les processus écosystémiques sur le long terme, dans une perspective agricole.

https://www.institutparisregion.fr/nos-travaux/publications/agriculture-et-biodiversite/

Ces recherches ont notamment mis en évidence les interactions positives entre espèces végétales et animales, qui ne se limitent d’ailleurs pas aux pollinisateurs. Ces recherches indiquent que la réintroduction d’une variété végétale permet de réamorcer un cycle vertueux de développement d’espèces interdépendantes.

Le projet de l’Autoroute de la Pluie, qui cible notamment l’implantation de 40 arbres par hectare, s’inscrit résolument dans cette approche : proposer des solutions fondées sur la nature pour favoriser le retour de la biodiversité sur des territoires qui souffrent de sa disparition.

Qu’est-ce qu’une plante ?

Francis Hallé a souvent dit qu’il était incapable de définir ce qu’était un arbre, car dès qu’on se hasarde à une définition, on trouve un contre exemple. Cette idée est reprise dans un film de 2002 de Sophie Bruneau et Marc-Antoine Roudil. Après avoir essayé plusieurs définitions, le narrateur finit par conclure pragmatiquement que si on rentre dans une plante en voiture et que la voiture est cassée, alors cette plante est un arbre.

Illustration : interaction entre Nepenthes ampullaria et une espèce de grenouille (Microhyla nepenthicola). Les déjections de la grenouille et de ses têtards nourrissent la plante. Il semble que celle-ci soit également capable de digérer des feuilles mortes (voir ici et ).

Cette difficulté à définir ce qu’est un arbre ou une plante s’applique-t-elle aux végétaux en général ? 

Si on se base sur la définition du Larousse, un végétal est un être vivant dont les cellules sont limitées par des membranes de cellulose. On a là effectivement une définition qui fonctionne. Toutefois, le dictionnaire avance d’autre caractéristiques moins universelles :

  • La présence de chlorophylle
  • Il existe des plantes comme la monotrope uniflore qui en sont dépourvues
  • Le fait d’être fixé au sol 
  • L’œillet de l’air, des chansons de Carlos Gardel (tillandsia aeranthos) est un plante sans racine, qui s’enroule autour d’un support quelconque (un fil électrique par exemple) 
  • Une sensibilité et une mobilité extrêmement discrètes
  • La sensitive (mimosa pudica) se rétracte lorsqu’on la touche
  • Et enfin, une nourriture composée de sels minéraux et de gaz carbonique

Ce dernier point mérite sans doute qu’on s’y arrête. En effet, ce n’est pas parce qu’on sait faire pousser des plantes de façon ultra intensive avec des minéraux et du gaz carbonique, que c’est ce qu’elles consomment spontanément. Au-delà des plantes carnivores spectaculaires, il semble que le fait de consommer des microbes soit assez répandu chez les plantes, il y a même une algue verte qui sait dégrader la cellulose d’autres plantes. Enfin, certaines orchidées mangent directement des champignons

Soyons mammouth

Le pléistocène est une époque géologique qui s’étend de 2,58 millions d’années à 11.700 avant le présent. Elle est caractérisée par une succession d’âges glaciaires et interglaciaires qui ont favorisé la création d’un biome connu aujourd’hui sous le nom de steppe à mammouths. Il s’agit d’une étendue herbeuse  allant de l’Espagne à l’Alaska. C’est l’âge d’or de la mégafaune.

Pendant longtemps on a pensé que cette steppe était dominée par les graminées, comme c’est le cas de tous les écosystèmes ouverts d’aujourd’hui. Pourtant un  article paru dans Science en 2014 a montré que c’est une autre famille de plantes (les phorbes) qui régnaient sur la steppe. Et que c’est il y a seulement 10.000 ans, c’est-à-dire en plein déclin des populations de mammouths, que les graminées ont pris le dessus. Un autre article de 2018 montre que “sans les mammouths, la végétation serait restée au stade d’une toundra peu productive qui n’aurait en aucun cas pu soutenir la diversité et l’abondance des grands herbivores dans un contexte climatique glaciaire”. Pour la grande steppe, le mammouth est une espèce clé de voûte. Il façonne le paysage.

Bien sûr, chaque espèce aménage son territoire. Les exemples ne manquent pas. Les blaireaux, en creusant leurs latrines autour des chemins qu’ils parcourent, font pousser les arbres fruitiers qui les nourrissent. Les plantes injectent dans les sols des sucres qui favorisent une microfaune et une fonge spécifique. Les castors aménagent des zones humides et multiplient saules, bouleaux et peupliers dont ils aiment se nourrir… 

Ce qui est remarquable ici, c’est l’impact sur la productivité de l’écosystème, notamment en condition extrême.

L’idée qu’un écosystème, pourvu qu’on lui apporte la juste perturbation, puisse être d’une plasticité sans limite, est au cœur de cette notion de syntropie que nous promouvons.

Nous ne sommes pas condamnés à voir notre environnement se dégrader, nous pouvons, en ayant les bons gestes au bon moment, l’orienter vers plus de productivité et plus de résilience sans besoin de déployer des trésors de technologie.

Comment les plantes captent l’eau par leurs feuilles

Saviez-vous que les plantes boivent aussi par leurs feuilles ?

Si ce phénomène a été identifié depuis longtemps par des agroécologues comme Hervé Coves, son importance a récemment été mise en évidence par plusieurs études scientifiques, présentées par Hervé Poirier, rédacteur en chef du magazine Epsiloon, dans un sujet diffusé dans l’émission La Terre au carré.

En plus de capter l’eau nécessaire à leur croissance par les racines, de nombreux végétaux utilisent un autre mode d’absorption, par les feuilles. Comme l’explique Hervé Poirier, « la cuticule un peu cireuse à la surface des feuilles s’est révélée pas totalement imperméable, l’eau semble pouvoir s’immiscer par les stomates, ces minuscules trous par lesquels le CO2 pénètre, ou à la base des poils, sur les feuilles ».

Jusqu’ici, la science avait considéré ce phénomène comme négligeable, en raison de la difficulté à suivre le chemin de l’eau dans les plantes, mais en traçant les isotopes de l’eau captée par les feuilles [3], des chercheurs ont montré que cette dernière « participe à la photosynthèse, se retrouve incorporée à la sève et repart vers les racines pour nourrir toute la plante ».

Selon Hervé Poirier, ce phénomène a été observé chez «230 espèces, du poirier aux orchidées, en passant par le pin ou la lavande » et au total chez plus de 85% des espèces étudiées. Il est particulièrement opérant pour les arbres (95% des essences étudiées), notamment pour les plus grands d’entre eux, pour lesquels l’eau remonte plus difficilement vers la cime.

Biologiste à l’Université de Berkeley, Todd Dawson a ainsi montré comment les séquoias du Pacifique s’abreuvent des nuages de brume et à quel point ce mécanisme a contribué à leur gigantisme. L’importance de ce phénomène a aussi été étudiée par Marilyn Ball, de l’Université nationale d’Australie, qui s’est intéressée à l’hydratation des mangroves. Le botaniste brésilien Rafael Oliveira a lui calculé qu’environ 8% de la croissance de la forêt amazonienne était due à l’eau captée par la canopée.

A ce jour, l’ampleur du phénomène reste difficile à quantifier, mais des biophysiciens de la NASA ont récemment établi, grâce à une analyse sur 20 ans des variations de la couverture végétale, que la croissance de ces écosystèmes est directement influencée par les averses journalières. « A l’échelle de la planète, cela représente des quantités considérables qui échappent aux modèles », indique Hervé Poirier, qui renvoie aux travaux du Néerlandais Jeroen Schreel sur la canopée européenne.

Ces découvertes suggèrent que la rosée peut constituer un apport en eau crucial en période de sécheresse et dans les zones arides, comme nous l’avions exposé dans un post précédent. Elles confirment aussi que nos connaissances sur la physiologie des plantes restent parcellaires. Mieux connaître les végétaux pour pouvoir les épauler par le biais de l’agroécologie s’impose comme un enjeu majeur du XXIe siècle.

Les photosynthèses

Il y a, derrière un discours marketé sur certaines plantes qui capteraient plus de CO2, un point qu’il faut éclaircir.

Il y a, derrière un discours marketé sur certaines plantes qui capteraient plus de CO2, un point qu’il faut éclaircir. 

La photosynthèse est une réaction chimique qui utilise la lumière et un “donneur d’électrons” pour transformer du CO2 en autre chose. Le donneur d’électrons peut être du fer, des nitrites, de l’hydroxyde de soufre ou d’arsenic. C’est généralement de l’eau. On la retrouve chez les algues, les plantes et certaines bactéries (les cyanobactéries). La photosynthèse à base d’eau, celle des plantes, est dite “photosynthèse oxygénique”. Elle décompose l’eau et le CO2 pour produire du sucre, de l’eau et de l’oxygène. 

6CO2 + 24H2O C6H12O8 + 12O2 + 12H20

Schéma issu de l’étude source de cet article

Pour la majorité des plantes (celles qu’on appelle C3), cette réaction est associée à une activité coûteuse en énergie et en eau qu’on appelle photorespiration. Cette stratégie ne permet qu’une production de biomasse moyenne, mais elle est très adaptée à des conditions climatiques variables. On considère généralement qu’il existe un optimum thermique de 25°C. Ce type de photosynthèse permet de capter 1 gramme de carbone pour 400 g d’eau.

Une autre stratégie (C4) permet d’éviter la photorespiration. Le processus de photosynthèse est effectué dans deux cellules distinctes. L’optimum thermique passe à 35° C et la plante utilise seulement 250 g d’eau pour fixer 1 g de carbone. C’est la stratégie des plantes tropicales comme le maïs, le sorgho, la canne à sucre et le mil.

Mais C3 et C4 ont une faiblesse : la plante doit pouvoir evapotranspirer en même temps qu’elle fait de la photosynthèse. S’il fait trop chaud, la plante peut donc soit fermer ses stomates pour préserver son eau et cesser toute activité métabolique, soit continuer la photosynthèse, quitte à tomber en stress hydrique.

Seules les plantes CAM, c’est à dire essentiellement les plantes grasses, les cactus, savent gérer cette situation. Comme les C4, ces plantes effectuent leur photosynthèse en deux temps. La nuit, elles effectuent les échanges gazeux, puis le matin, après s’être gorgées de rosée, elles ferment leur stomates et finissent de métaboliser le CO2 absorbé durant la nuit sans perdre une goutte d’eau. Leur optimum est de 35°C le jour et de 15°C la nuit, car l’échange gazeux ne peut se faire qu’avec une certaine chaleur. Mais c’est seulement 50 g d’eau qui leur faut pour capter 1 g de CO2.

Il n’y a pas donc des plantes qui captent plus de CO2, il y a des plantes qui à volume d’eau constant vont faire plus de biomasse et des plantes qui sont davantage capables que d’autres de fonctionner quand il fait chaud.

#photosynthèse

Les moutons de mer (ou moutons à fleur) volent les chloroplastes des algues qu’ils consomment pour faire eux mêmes de la photosynthèse. Image accessible ici.

Voir l’étude « Exploring natural variation of photosynthesis in a site-specific manner: evolution, progress, and prospects » pour la source bibliographique.

Le mur évolutif selon Marc-André Selosse

Image : diversité des céréales à paille (Inrae A.Didier E.Boulat)

Nous construisons un mur que nous ne saurons pas franchir. 

Marc-André SELOSSE a présenté son livre « Nature et préjugés, Convier l’humanité dans l’histoire naturelle » (Actes Sud). Il y disserte sur nos idées reçues concernant la nature et notamment l’évolution.

Ça été l’occasion d’évoquer l’utilisation des mécanismes de mutation et de sélection naturelle comme un outil ; sujet qu’il avait déjà abordé il y a 3 ans lors d’une conférence pour AgroParisTech [voir l’intervention]. Il montre comment la trithérapie (combinaison de plusieurs drogues) dresse un mur adaptatif pour le virus du VIH. Le virus est incapable de s’adapter à la diversité des réponses (à l’inverse de ce qui se passe avec les antibiothérapies).  

Ainsi, cette question, de la diversité que nous avons souvent traité sous l’angle de la résilience climatique et hydrique du territoire, devient aussi une question sanitaire. Dans les paysages divers et complexes, la portée des évènements sanitaires est fortement limitée. Bien sûr des catastrophes, comme la Pyrale du buis ou la Chalarose du frêne peuvent encore se produire, mais cette prophylaxie de la diversité est une stratégie gagnante. D’ailleurs elle fait l’objet de pratiques agricoles très répandues :

  • rotation des cultures
  • haies de séparation
  • agencement du parcellaire
  • utilisation de mélanges variétaux ou de population
  • sélection de variétés résistantes aux maladies cryptogamiques (cépages resDUR de l’INRAE par exemple).

Toutefois, malgré ces exemples, la stratégie du vide et de l’uniformité (ce qu’on appelle la biosécurité) reste prégnante en santé animale, humaine et végétale.

L’intervention des vétérinaires Coralie Amar et Lucile Brochot au PIM 2022 illustre ce concept et ses limites appliqué à l’élevage).

Or, comme le fait si justement remarquer Marc-André SELOSSE si nous ne sommes pas doués pour utiliser l’évolution à notre avantage, la grande diversité des nouvelles molécules (pfas, microplastiques, pesticides, métaux lourds …) que nous dispersons dans l’environnement est en train de construire un mur d’adaptation que nous ne saurons franchir. La baisse drastique de la fertilité, l’augmentation de 300 % des allergies alimentaires en 20 ans et l’explosion des problèmes de santé systémiques  comme le diabète, l’asthme ou l’autisme, sont sans doute autant les signes annonciateurs de ce qu’il faut bien appeler l’inadaptation de l’homme à son milieu.

Considérer l’évolution comme un mouvement auquel on participe et non comme un phénomène exogène, considérer notre place dans les écosystèmes parfois lointain desquels on extrait notre nourriture et nos matériaux, voila une des leçons de « Nature et préjugés ».

Landrace Gardening – pour une horticulture variée et robuste

Illustration les melons de Joseph Lofthouse.

En botanique, une espèce  compte souvent plusieurs variétés. Par exemple, pour  la tomate (Solanum lycopersicum), il y a la tomate cerise (cerasiforme) et la tomate à gros fruits (esculentum).

Mais souvent, dans une acception plus générale, le terme de variété est utilisé pour désigner une forme plus précise aux caractéristiques réputées uniques, (Cœur de Boeuf, Marmande, Green Zebra). C’est ce qu’on appelle un cultivar.

Un cultivar a été sélectionné et stabilisé afin de posséder des propriétés (goût, productivité, couleur, résistance aux maladies) constantes. Il est reproduit selon des modalités précises qui dépendent essentiellement de l’espèce.

A l’inverse des cultivars, il y a les variétés “population” qui sont obtenues par sélection massale. Autrement dit, au lieu de s’assurer de conditions strictes donnant un résultat reproductible, le fermier obtient sa semence à partir des parties de sa récolte qui lui semblent les plus prometteuses.

Le chimiste et maraîcher Joseph Lofthouse, raconte dans “Landrace Gardening: Food Security through Biodiversity and Promiscuous Pollination” comment il a utilisé la sélection massale pour obtenir des melons dans un contexte pédoclimatique totalement défavorable. Vous pouvez également retrouver ces expériences sur la chaîne youtube Landrace Gardening ou sur le site Going to seed, qui fédère un réseau d’échange de graines et des ressources pour se former.

Sa technique consiste à planter un grand nombre de variétés (pour les melons, plus de trente) et à favoriser l’hybridation de proximité. Puis à simplement utiliser les graines issues des plantes qui lui ont donné satisfaction. Et comme il fait l’inverse de ce qui est habituellement préconisé, il obtient l’inverse du résultat habituel : une production d’une grande variété de formes, goûts et couleurs.

Pour l’Autoroute de la Pluie, cette approche à base de diversité ouvre une porte de plus dans la palette des solutions fondés sur la nature. Pour peu qu’on sache admettre qu’on n’aura pas un melon de Cavaillon quand on est dans les montagnes de l’Utah.

Les zones humides littorales, un enjeu pour l’eau, la biodiversité et le climat

Au cours du dernier siècle, le niveau moyen de la mer a déjà augmenté de 20 cm. En 2050, ce sera au moins 15 cm de plus (scénario intermédiaire du GIEC à +2°).

Par ailleurs, il n’aura échappé à personne que le régime hydrologique habituel, en grande partie basé sur des stocks montagne (neige, glace), se dérégule et s’effondre.

Dans ce contexte, plusieurs facteurs favorisent les précipitations : 

  • L’élimination des points chauds
  • La continuité végétale
  • L’aménagement des cours d’eau
  • L’aménagement des côtes

Les zones humides littorales (voir l’étude Revue géographique des pays méditerranéens n° 215 de 2015 : Dynamiques des zones humides littorales et enjeux de gestion en Méditerranée et un Guide de l’Observatoire du littoral) constituent donc un enjeux essentiel, car elles sont un tampon entre la terre et la mer. Elles agissent comme une protection contre l’entrée de l’eau salée dans les terres mais également comme récupérateur du ruissellement des plaines côtières. Ce sont également des zones de production économiques importantes pour des activités traditionnelles (pisciculture, marais salant, pré salés, conchyliculture, production d’algues et de salicorne), auxquelles s’ajoutent désormais la production d’énergie et d’eau douce . Enfin, ce sont également des espaces privilégiés pour la biodiversité, et en particulier les espèces migratrices qui y trouvent des aires de passage.

En Europe, les formes les plus courantes sont l’étang, le marais et le pré salé. En zone tropicale, on trouve également les mangroves (voir le Guide pratique de production et de plantation des espèces de mangrove au Bénin et se l’ouvrage Mangrove ; une forêt dans la mer, 2018) dans lesquelles poussent des palétuviers.

Les palétuviers (ce nom vernaculaire désigne près de 25 arbres différents) sont des plantes halophytes et hydrophiles. Cela veut dire qu’ils supportent le sel et l’immersion. A ce titre, ils n’ont pas d’équivalent en zone tempérée, où les quelques arbustes halophytes (comme le tamaris) sont plutôt des plantes frustres. Outre le fait qu’une forêt de palétuviers est un obstacle aux fureurs de l’océan, un hectare de ces arbres transpire jusqu’à 30m3 d’eau par jour, ce qui est plus qu’une forêt de feuillus.

Ainsi, la zone humide littorale devient un moyen de dessaler l’eau de mer pour l’injecter dans l’atmosphère à proximité des côtes. Certains ont même envisagé de  la récupérer sous forme liquide. A titre de comparaison, l’usine de dessalement d’El Prat del Llobregat près de Barcelone, qui fournit 60000 m3 d’eau par ans pour seulement 180 MWh, a couté, en 2007, 230 M d’euros.

Pour toutes ces raisons, nous estimons que la recherche sur les plantes halophytes et le réaménagement des littoraux devrait être une priorité.

L’image d’illustration est « Ilôt de palétuviers au Philippines après le passage du typhon RaI en 2021 » (wikimédia)

Page 1 of 2

Fièrement propulsé par WordPress & Thème par Anders Norén

WP2Social Auto Publish Powered By : XYZScripts.com