Initiative de réappropriation climatique

Étiquette : agroforesterie Page 1 of 2

La photosynthèse à 5 pattes

Dans la publication précédente, nous avons vu qu’il existe trois modes de photosynthèses, C3, C4 et CAM, chacun adapté à un contexte et notamment à un optimum de température. La C4 pour les herbes tropicales, la CAM pour les plantes grasses, la C3 pour le reste. Aujourd’hui nous allons nous attacher à nuancer ce propos.

Image paulownia – Image peuplier : (projet déployé par l’Association française d’agroforesterie) – Image bambou – Image miscanthus

D’abord, sur l’optimum de température, les travaux récents de Mulet François sur la conduite de certaines plantes en conditions tropicale, laissent à penser que la question est plus complexe que ce que l’on pourrait le croire de prime abord, puisqu’il fait pousser des courges à 45°C et 100 % d’humidité. Pourtant, elles sont censées avoir un optimum à 25°C. La disponibilité en eau et l’humidité de l’atmosphère ainsi que l’espèce sont susceptibles de modifier ce paramètre.

Beaucoup de plantes ont en outre un mode de photosynthèse non conventionnel :

🌳le paulownia, dont on a longtemps cru que c’était un arbre C4, est en fait capable d’être un C3 et un CAM (voir cette étude et celle-ci).

🎍le bambou est un C3 atypique qui sait utiliser le CO2 issu de la photorespiration (voir ce lien)

🌿le miscanthus est certes une plante C4, mais capable de fonctionner à partir de 15°C (voir l’étude : « Long SP, Spence AK. 2013. Toward cool C4 crops. Annual Review of Plant Biology » 64, 701–722).

On remarque au passage que beaucoup de champions de la biomasse sont des plantes atypiques.

Dans la biomasse, on considère qu’il y a toujours à peu près 58% de carbone. Ce qui compte donc, ce n’est pas la nature de la biomasse, mais la quantité produite (exprimée en matière sèche).

Pour une quantité d’eau donnée, toutes les plantes ne produisent donc pas la même biomasse. Et cela ne dépend pas seulement du processus de photosynthèse. Les plantes ont d’autres stratégies, comme la mise en réserve de sucres dans les parties souterraines, l’alliance avec certains champignons ou la capacité à capturer la rosée qui les aident à croître. Est-ce pour autant qu’on peut dire qu’elles captent plus de CO2 ?

Ce qui compte avant tout pour produire de la biomasse, c’est que la plante soit adaptée à ses conditions de culture : son sol, son climat, mais aussi à la méthode de plantation et de conduite des cultures.

#co2 #plantes #photosynthèse

Les sources de l’image du post sont accessibles ici [7]. Nous avons ajouté le peuplier pour illustrer un végétal à croissance rapide des milieux tempérés.

Zaï et lutte contre la désertification au Niger

⚒️🏜️Suite sur la lutte contre la désertification au Sahel – Comment le zaï permet la régénération massive d’écosystèmes dégradés au Niger ? 🌱🌴

Ces images sont issue de la vidéo d’Andrew Millison

Une vidéo d’Andrew Millison, publiée en novembre 2024, est particulièrement motivante. Cet enseignant en permaculture est un vidéaste populaire sur Youtube avec plus de 500.000 abonnés. Cela lui permet de diffuser massivement les bonnes nouvelles de la planète, car il y en a encore !

La vidéo au cœur de ce post concerne la restauration de 300.000 hectares au Niger, en dix ans. Les résultats sont parlants, comme en témoigne l’illustration du post, issue de la vidéo. Pour restaurer ces terres arides et désolées, une myriade de demie-unes ont été creusées par les paysans nigériens. Le déploiement de ces mesures de conservation des sols et des eaux [voir post sur le Burkina Faso, 2] a permis à la végétation de pousser et aux arbres de s’épanouir.

Selon les gestionnaires du projet, la restauration d’un hectare profite au total à 3 hectares, grâce notamment à la protection contre les effets des vents venus du désert. Ils estiment donc que 900.000 hectares en bénéficient. Les bénéficiaires de ce projet font état d’une température de 5 à 9 degrés inférieure dans les zones restaurées par rapport aux terres arides avoisinantes. L’agroforesterie est décidément une mesure de remédiation climatique très efficace.

La vidéo se concentre sur une zone de 800 hectares de ce projet nigérien. Le déploiement de ces méthodes traditionnelles de gestion de l’eau aurait déjà permis aux aquifères, jusque-là menacés d’épuisement, de recommencer à se remplir. Enfin, sur l’ensemble du projet au Niger, 500.000 personnes auraient été “mises en sécurité alimentaire” grâce à la régénération de ces terres agricoles.

Ce projet s’insère dans la démarche plus large, et titanesque, de Grande Muraille Verte en Afrique subsaharienne, qui vise à freiner voire à inverser la désertification de 11 pays du Sahel. Cette muraille doit relier Dakar (Sénégal) à Djibouti et porte sur 117.000 km 2 (11,7 millions d’hectares).

Nous explorerons plus en détail les impacts déjà constatés de la Grande Muraille Verte dans de futurs posts.

Si Andrew Millison est parfois un peu trop enthousiaste, sa capacité à rayonner sur les réseaux en fait définitivement un porte-parole du mouvement de promotion de l’agroécologie. Ses vidéos sont réalisées avec soin, ce qui permet au message de rayonner au-delà du cercle des convaincus.

Car pour déployer d’ambitieux projets basés sur l’intensification agroécologique, toutes les forces vives seront nécessaires. C’est ce à quoi s’attelle notre collectif !

Agroforesterie d’urgence et désert

🌴🚨 Déployer une agroforesterie d’urgence pour faire pleuvoir dans le désert, c’est possible ? 🏜️🌧️

L’image provient de l’étude à la base de l’article – https://www.pnas.org/doi/10.1073/pnas.1904754116

En 2019, deux chercheurs de l’Institute of Physics and Meteorology (Université d’Hohenheim, Allemagne), se sont penchés sur cette question, via une approche agroforestière jouant à la fois sur le stockage du carbone dans les sols et sur l‘amélioration délibérée des précipitations dans un territoire.

L’étude “Deliberate enhancement of rainfall using desert plantations” évalue où, dans le monde, implanter de larges plantations capables d’améliorer localement les pluies. Les deux zones témoins sont Oman et Israël et la méthode envisagée, très spécifique, ne fonctionne que pour Oman, certains critères devant être rassemblés.

Les chercheurs définissent leur proposition comme de la “biogéoingénierie”. Nous préférons le “génie écologique” et le  “biomimétisme”, comme le promeut Pierre Gilbert, tant le premier terme rappelle les errements des techno-solutionnistes.

Ce travail se base sur des modèles à haute résolution, dotés de représentations sophistiquées de la surface terrestre (Weather Research and Forecasting couplé au modèle terrestre Noah), pour appréhender la chaîne de processus complexes conduisant aux modifications du climat régional et potentiellement global. A partir de cette compréhension affinée et d’une analyse statistique, les chercheurs proposent un “indice de rétroaction global (GFI)” pour prédire les impacts des plantations sur le climat régional.

Concrètement, l’étude envisage les paramètres suivants : 

☑️Plantation d’arbre sur 100 km2

☑️Utilisation d’arbres sombres (jojoba), donc à albédo faible, plantés sur une surface claire

☑️La zone dispose d’une humidité conséquente

☑️ Le vent y est faible, voir inexistant

Pour faire tomber la pluie, les auteurs introduisent les variations suivantes:

🚿 Arrêt de l’irrigation

🌴Les arbres ferment alors leurs stomates, mais continuent la photosynthèse

🌞L’albédo faible fait chauffer la zone

↗️Cela fait monter l’air, qui emporte de l’humidité

☁️La colonne d’air chargée d’humidité arrive dans la zone où le gradient thermique permet de condenser

🍄 Les arbres émettent également des bioaérosols qui favorise aussi la condensation

🌧️Grâce à l’absence de vent dans la zone, la pluie y tombe

On peut retirer de cette étude un paradoxP
Un merci tout particulier à Ali Bin Shahid, du Pakistan, pour la référence de cette étude. La description du profil d’Ali parle d’elle-même “Quantifying Nature’s Rhythms for Climate Solutions | Rainman”.

Les méthodes agricoles en milieu semi-désertique

🌱Comment cultiver en territoire semi-désertique 🏜️ et sensiblement diminuer le risque d’inondations en cas d’épisodes pluvieux extrêmes ? ☔

L’étude Exploring the Potential of Soil and Water Conservation Measures for Climate Resilience in Burkina Faso, qui analyse la situation en milieu Sahélien, revient sur des principes qui devraient être adoptés dès maintenant dans un pourtour méditerranéen en cours d’aridification.

Parue en 2024, cette étude est le fruit d’une collaboration entre scientifiques burkinabés et japonais, dont Carine Naba. Ils ont utilisé des données nationales, la télédétection et des outils SIG pour évaluer l’adoption des mesures de conservation des sols et des eaux (“Soil and water conservation measures (SWCMs)” dans l’étude) et leur potentiel de résilience climatique.

Les techniques étudiées sont traditionnelles au Sahel : demi-lunes, cordons pierreux, zaïs, diguettes filtrantes, bandes enherbées et boulis.

Les résultats de l’étude sont notamment :

  • Une augmentation notable de la végétation dans les provinces à forte prévalence de pratiques de conservation des sols et des eaux. Cet essor interpelle alors que la désertification menace les pays du Sahel. Il est possible de lutter efficacement contre ce risque.
  • Le déploiement de ces techniques entraîne une réduction considérable du ruissellement. Ainsi, les références bibliographiques de l’étude font état de réduction du volume de ruissellement de l’ordre de “70% au niveau du champ et de 8% au niveau du bassin en cas d’événements pluvieux extrêmes”.
  • Plus les terres sont dégradées, plus les agriculteurs sont susceptibles d’adopter ces pratiques (seuil évalué à partir de 60% de dégradation des terres). Cela pose la question de l’adoption des pratiques agroécologiques, qui dépend encore malheureusement de l’état de dégradation des terres. L’adage “mieux vaut prévenir que guérir” prend tout son sens, tant en Afrique qu’en Europe.

On le voit, des ajustements agronomiques relativement mineurs peuvent permettre une atténuation sensible d’aléas climatiques de plus en plus extrêmes. Nous pensons qu’il ne faut pas attendre que la situation se dégrade pour réagir. C’est pourquoi nous prônons un déploiement rapide de ces techniques en contexte méditerranéen. Les tragiques inondations d’octobre 2024 en Espagne ne peuvent qu’accréditer cette thèse.

Il est temps d’adapter nos territoires et les exploitations agricoles qui les maillent. Ces mesures de conservation des sols et des eaux s’apparentent à l’approche de l’hydrologie régénérative en plein essor en France, que complète efficacement l’agroforesterie. L’agriculture de conservation des sols, l’agriculture biologique de conservation des sols et l’agriculture régénérative sont d’autres méthodes à déployer massivement pour renforcer notre robustesse, concept stratégique que diffuse Olivier Hamant.

Maïs et climat aux USA

🌽Comment la culture du maïs à changé le climat de la Corn Belt ?🌦️

Une étude publiée dans Geophysical Research Letters révèle que l’intensification de l’agriculture dans le centre des États-Unis au cours du XXe siècle a entraîné, durant la période estivale, une baisse des températures et une augmentation des précipitations, en contradiction avec la tendance mondiale au réchauffement climatique.

L’étude, dirigée par des scientifiques de l’université de l’Iowa et du National Oceanic and Atmospheric Administration (NOAA), a analysé des données climatiques et agricoles sur une période de 100 ans. La région étudiée, la Corn Belt, correspond aux États américains du Midwest (Iowa, Illinois et Wisconsin, entre autres).

Les résultats indiquent que l’intensification agricole (qui comprend, hélas, l’augmentation de l’utilisation d’engrais et de pesticides) a modifié les échanges d’énergie entre la surface terrestre et l’atmosphère, conduisant à un refroidissement estival régional.

Cette découverte met en lumière l’impact de l’agriculture sur le climat régional. Les pratiques agricoles peuvent avoir des effets complexes et parfois contre-intuitifs. Entre 1950 à 2010, la quantité de maïs récoltée chaque année dans la Corn Belt a augmenté de 400 %, alors que cette plante présente de très importantes capacités d’évapotranspiration estivale.

Malheureusement, cette tendance climatique positive résulte d’une approche basée sur l’intensification technologique et l’usage d’intrants, qui n’est ni soutenable ni souhaitable. Elle a eu pour corollaire une intensification de l’irrigation et une inflation de l’usage de pesticides et surtout la perte d’un tiers de couches de surface riche en carbone et des problèmes de pollution de l’eau aux nitrates. Il faut donc rester prudent sur ces résultats qui peuvent masquer d’autres impacts délétères.

Et une autre étude sur cette thématique, alerte : “si la croissance de la production de maïs et de soja devait stagner, la capacité de la rétroaction culture-climat à masquer le réchauffement s’atténuerait, exposant les cultures américaines à des températures extrêmes plus nocives.”

Vous l’aurez compris, au travers de cet exemple nous ne cherchons pas à faire la promotion de pratiques culturales intensives, mais bien de mettre en avant l’interaction entre cultures agricoles et climat.

En outre, le maïs, pour beaucoup devenu le symbole d’une agriculture intensive et des élevages hors sol, reste une plante aux capacités de mycorhization et de photosynthèse (plante dite C4) extraordinaires.

Ainsi, la culture associée des “trois sœurs” (maïs, haricot et courge) ou milpa, est un mode de culture associé propre aux peuples amérindiens, qui peut, par sa stratification, rappeler l’agriculture syntropique. Décidément, nous n’avons pas fini d’apprendre des jardins américains.

N’est-il pas temps d’examiner sérieusement les possibilités offertes par l’agroforesterie et l’agriculture syntropique pour nos territoires ?

L’impact climatique du mode d’occupation des sols

Bon nombre de recherches démontrent que les modes d’occupation des sols impactent fortement le climat. Malgré que ce constat soit progressivement compris, il tarde à infuser dans les politiques d’aménagement du territoire. On peut ainsi se demander pourquoi une approche systémique n’est pas adoptée pour maximiser l’impact d’une gestion vertueuse des sols.

L’étude Land use still matters after deforestation, publiée en 2023 par des chercheurs, majoritairement brésiliens, décrypte les impacts de la déforestation et des modes d’usages des sols en Amazonie et dans le Cerrado. L’étude porte sur le Brésil mais, les mêmes causes engendrant les mêmes effets, on se doit d’évaluer avec attention ces impacts en Europe occidentale. L’étude se concentre sur l’évaluation de l’utilisation des zones déboisées depuis les années 1970, alors que la surface de culture de soja, par exemple, y a décuplé entre 2000 et 2019. 

🌡️Il en ressort que la conversion de forêts en terres agricoles (légumineuses et céréales), cultivées de manière conventionnelle, peut entraîner une augmentation de la température de surface trois fois plus élevée que la conversion en pâturages.

🌥️ Cela est dû au fait que la gestion intensive des terres réduit la transpiration des plantes et provoque des changements dans l’équilibre énergétique de la surface. Ceci est clairement représenté dans l’illustration du post, où certains sols de cultures céréalières atteignent 55° c.

☀️En outre, l’expansion des terres cultivées et la création de grandes zones déboisées continues peuvent réduire considérablement les précipitations, par la perturbation du cycle de l’eau. La limite de déboisement pour ne pas enclencher ce cycle est estimée à 10 km2.

Les auteurs recommandent l’adoption de l’agroforesterie et de l’agriculture syntropique pour cultiver les zones défrichées. Plus généralement, la stratification des écosystèmes et l’introduction de l’arbre dans le système agricole sont plébiscités.

La mention de la syntropie fait écho à notre série de posts sur cette approche particulièrement adaptée aux enjeux du dérèglement climatique et de l’érosion brutale de la biodiversité ( voir [3, 4 et 5]). L’agroécologie atténuerait sensiblement les impacts de la déforestation.

Les auteurs préconisent également de travailler étroitement avec le secteur agricole, “et non contre lui. Il est peu probable que le fait de pointer du doigt aboutisse à des progrès.  Cette étude est donc particulièrement d’actualité, tant les débats sur la question agricole sont polarisés.

Le projet de l’Autoroute de la Pluie s’inscrit dans une perspective similaire. N’est-il pas urgent de réintroduire de la stratification dans nos systèmes agricoles, tout particulièrement céréaliers ? Pour cela, notre collectif œuvre à la construction d’un corridor agroforestier dans le Lauragais. Nous avons besoin de toutes les énergies pour le faire advenir et pour replacer la photosynthèse au cœur de nos psychés.

Comprendre la syntropie 3 : Quelles ressources pour commencer ?

Nous avons essayé de présenter dans deux précédents articles des notions que l’agriculture syntropique met en œuvre. Elles peuvent sembler éloignées du sujet principal qui est d’installer et de faire prospérer des plantes pour répondre à nos besoins.

Mais cette entrée en matière par le champ scientifique nous a semblé nécessaire parce que l’agriculture syntropique découle d’une compréhension du monde, issue non pas de la physique newtonienne qui nous est si familière, mais d’une vision thermodynamique encore éloignée de nos canons de perception. Admettre l’irréversibilité, comprendre que le tout n’est pas égal à la somme des parties, penser les systèmes en termes de flux est et de dissipation échappe complètement au canons des techniques de production. Lorsqu’un tracteur travaille, qu’est-ce qui part en chaleur ? qu’est-ce qui le fait avancer  ? Toutes ces questions ne sont sûrement pas neuves. Elles datent de la machine à vapeur. Pourtant tous nos indicateurs clés comme le rendement ou le PIB sont établis comme si l’expérience de production était reproductible à l’infini, comme si le monde était constant. 

N’oublions pas toutefois que la syntropie ce sont avant tout des fermes. Celle de Ernst Gotch au Brésil, celle des Magawits en France, et bien d’autres de part le monde, expérimentent dans le domaine agricole. Il y a beaucoup de témoignages, de formations, de partages d’expérience. Notamment grâce au travail didactique d’@Opaline. Toutefois, si ces témoignages sont utiles, il manquait un ouvrage de référence. C’est chose faite avec la parution de  Bienvenue en syntropie de Théry Analële (préface de Opaline Lysiak, coédition Joala Syntropie et Terre vivante).

L’auteure y partage son expérience d’adaptation des techniques développées par Ernst Götsch en milieu tempéré. Le cheminement du livre nous amène de la théorie à la pratique de façon très imagée et ludique. Si cela rend la lecture facile et agréable, ces deux aspects auraient peut-être pu être plus incarnés afin d’être mieux questionnés : une sorte de dialogue socratique entre un philosophe et un paysan ? Car la syntropie telle que nous la comprenons place la science au cœur de l’élaboration du processus technique. Notons d’ailleurs qu’une réflexion similaire a amené le philosophe Bernard Stiegler à inventer les Territoires Apprenant Contributif, un projet de développement économique néguentropique.  

Au-delà de cette remarque, le livre est d’un apport théorique et pratique inestimable et va bien au-delà de la palanquée de PDF qu’on peut trouver sur internet et qui manquent cruellement de concret. Quand on s’intéresse à la production végétale, la qualité des itinéraires décrits et des pistes explorées ouvre des possibilités d’expérimentation et de design infinies. 
Pour clore cette présentation de la syntropie, citons le mot de Théry Analële : “La syntropie n’est ni simple, ni complexe mais simplexe”.

Comprendre la syntropie 2 : Le vivant est une structure dissipative

Ce post fait suite à un post dans lequel nous situions l’agriculture syntropique d’un point de vue anthropologique (cf article).

Souvent, on présente la syntropie comme l’inverse de l’entropie. Or selon le second principe de la thermodynamique, ce qui caractérise l’entropie c’est qu’elle ne peut pas diminuer. Elle ne peut donc pas à proprement parler avoir d’inverse.  

La capacité du vivant à s’ordonner, croître et se reproduire, stocker de l’énergie, s’aggrader apparaît alors comme paradoxale (Qu’est-ce que la vie ? Erwin Schrödinger 1944).

Ce paradoxe, c’est le physicien Ilya Prigogine qui le résout grâce au concept de structure dissipative (Temps, Structure et Entropie, Ilya Prigogine, Bulletins de l’Académie Royale de Belgique Année 1967 53).

La dissipation désigne le fait qu’au cours du temps un système dynamique perd de l’énergie sous forme de chaleur. Ainsi le caractère irréversible de l’entropie devient un cas particulier du caractère irréversible du temps. 

En agriculture syntropique, on utilise :

La succession végétale qui permet de maintenir en permanence une végétation à un stade optimal : c’est la dimension temporelle.

La stratification afin de favoriser la captation optimale de la lumière : c’est la.dimension énergétique

La perturbation qui permet de stimuler l’activité biologique : c’est la dimension entropique.

A ces trois paramètres il faut en rajouter un principe d’intensité : l’abondance. La syntropie c’est produire beaucoup en permanence. 

Ainsi la syntropie, que nous avions défini en première approximation comme un mouvement anthropologique autour de pratiques agricoles, s’avère être un moyen de médiation énergétique auquel il convient de réfléchir. L’agroécosystème syntropique constitue certainement une bifurcation dans le mode de production agricole, mais il nous fait surtout comprendre qu’une intensification démesurée de l’activité végétale libère un potentiel qui pourrait être une partie de la réponse à nos problèmes de dessèchement et de surchauffe : Utiliser la capacité de dissipation du vivant ; un mouvement anthropologique et anthropique.

Pour l’autoroute de la pluie, l’agroécologie et en particulier l’agroforesterie, permet d’engager une transition du point de vue de l’alimentation et de la biodiversité, mais aussi du point de vue d’une équation énergétique globale.

Pour une hydrologie régénérative

🌧️Connaissez-vous l’hydrologie régénérative qui vise à hydrater nos territoires ?🏞️

Le collectif de l’Autoroute de la Pluie adhère pleinement à cette approche qui vise à : 


🌧️🏞️ Ralentir, répartir, infiltrer et stocker toutes les eaux de pluie et de ruissellement 

🌱🌳 Densifier la végétation multifonctionnelle, cultivée ou non

L’énoncé de ces principes provient du site de l’association française Pour une Hydrologie Régénérative, créée en 2022.

Pour comprendre ces enjeux, Ananda Fitzsimmons revient dans son livre “Hydrater la terre” (commande disponible sur le site des éditions La Butineuse) sur le rôle oublié de l’eau dans la crise climatique. L’environnementaliste et promotrice de pratiques agroécologiques canadienne revient sur les risques liés à la désertification des territoires et les possibilités de régénérer le cycle de l’eau. Elle évoque plusieurs exemples d’application de l’hydrologie régénérative. Ainsi, en Arabie Saoudite des bédouins travaillent à contrer la désertification au moyen d’ingénieux dispositifs visant à ralentir le flux des rares précipitations, relançant ainsi l’activité photosynthétique [voir ce post très instructif].

En Australie, l’ingénieur et agriculteur PA Yeomans [version électronique du livre “The Keyline plan” de PA Yeoman] a dans les années 1950 inventé et appliqué le keyline design [définition du keyline design sur le site de Neayi – triple performance], un des piliers de l’hydrologie régénérative. Cette technique d’aménagement vise à maximiser les ressources en eau. En étudiant la topographie du territoire, il est possible d’y intégrer des keylines, qui suivent les courbes de niveau, pour y stocker et infiltrer les pluies. Les résultats en milieu semi aride ayant été probants, ces principes ont commencé à essaimer.

En France, Simon Ricard est un des praticiens de l’hydrologie régénérative (avec Perma Lab). Il accompagne des agriculteurs pour renforcer la résilience, hydrique notamment, de leurs exploitations. Alain Malard aide plus spécifiquement les viticulteurs. Tous deux partagent régulièrement sur LinkedIn des informations sur leurs activités.

Citons également Samuel Bonvoisin, conférencier et consultant en agroécologie, qui contribue à diffuser ces bonnes pratiques. Enfin, Charlène Descollonges, hydrologue de formation, auteure et conférencière, a acquis une notoriété qui permet de diffuser largement ces idées novatrices et porteuses d’espoir. La liste n’est pas exhaustive, cette association rassemblant de nombreux praticiens soucieux d’hydrater durablement les territoires.

Cette association travaille actuellement à mettre en place des “Plans territoriaux de régénération des cycles de l’eau “ afin que l’hydrologie régénérative passe à l’échelle en France. On le voit, hydrologie et pratiques agricoles et forestières sont étroitement imbriquées. Les convergences avec l’autoroute de la pluie sont évidentes.

Il est plus que jamais nécessaire de revoir notre manière de penser le territoire et d’y intégrer les notions d’hydrologie régénérative, d’agroforesterie à grande échelle et d’agroécologie. Cela ne pourra que renforcer les territoires et contribuer à atténuer la crise climatique.

Comprendre la syntropie 1 : le jardin tropical

Dès le 16ème siècle, l’exubérance de la flore tropicale a pour les Européens quelque chose du jardin d’Eden ; une image du paradis terrestre qu’on retrouve dans quantité d’œuvres : les voyages de Bougainville, Paul et Virginie, les jungles du Douanier Rousseau. Cette image d’une nature idéale cristallise les regrets d’une société marquée dès le 18ème par l’exode rural et le colonialisme. Au 19ème, les palmiers chanvres arrivent devant les fermes du Sud-Ouest. Ils sont ramenés par les jeunes gens qui vont faire leurs 5 années de service outre-mer. Au 20ème siècle, les pavillons coloniaux, la démocratisation de la banane, du café et du chocolat finiront par consolider cette image d’abondance.

Pour ceux qui s’y installent, souvent issus de territoires pauvres, où on s’échine à valoriser des sols trop maigres, trop caillouteux ou des saisons trop courtes, la croissance des plantes en zone tropicale humide a quelque chose d’indécent. Ils feront de ce potentiel un pilier de la prospérité Européenne [Etemad Bouda, De l’utilité des empires. Colonisation et prospérité de l’Europe, XVIe-XXe siècles].

Pourtant, tout a leur fascination, ils passent complètement à côté de l’essentiel. L’Amazonie du 16ème siècle n’est pas une forêt vierge [Stéphen Rostain, La forêt vierge d’Amazonie n’existe pas, éditions Le Pommier, 2021], mais un véritable jardin tropical hébergeant jusqu’à 10 millions d’habitants [fouilles menées par Mamirauá Institute for Sustainable Development et l’archéologue Rafael Lopes de l’université de Sao Paulo] sur les 50 à 80 millions que compte l’Amérique à l’arrivée des colons [Earth system impacts of the European arrival and Great Dying in the Americas after 1492]. Les indigènes aussi sont des cultivateurs. Il existe une façon de faire de l’agriculture qui échappe à l’appréhension des Européens et de leurs descendants.

Contrairement au champ, qui est une simplification drastique, un effacement de l’écosystème préexistant, l’agroforêt tropicale compose avec la complexité et la dynamique du vivant. Pour Ernst Götsch, chercheur et cultivateur agroforestier au Brésil, cette opposition confronte l’ordre à l’intérieur du vivant au chaos des systèmes physiques. La vie est alors caractérisée par une entropie négative. Erwin Schrödinger (celui du chat 🐈‍) dans son ouvrage “Qu’est-ce que la vie ?” parlera à ce propos de néguentropie. Le mathématicien italien Luigi Fantappiè dans une tentative de regrouper physique et biologie, inventera, lui, le terme de syntropie.

Dans cette perspective en première approximation, si on considère qu’à compter du 16ème siècle, l’Europe a exporté sa façon de concevoir la production végétale, l’agriculture syntropique pourrait être une tentative d’initier un mouvement inverse.

L’agroforesterie en bande dessinée de Lotufo & Trevelin (2019, disponible en ligne) donne une première image du sujet.

Page 1 of 2

Fièrement propulsé par WordPress & Thème par Anders Norén